2120

IEEE SENSORS JOURNAL, VOL. 13, NO. 6, JUNE 2013

Nonuniform Compressive Sensing for
Heterogeneous Wireless Sensor Networks

Yiran Shen, Student Member, IEEE, Wen Hu, Senior Member, IEEE, Rajib Rana,
and Chun Tung Chou, Member, IEEE

Abstract—In this paper, we consider the problem of using
wireless sensor networks (WSNs) to measure the temporal-spatial
profile of some physical phenomena. We base our work on two
observations. First, most physical phenomena are compressible
in some transform domain basis. Second, most WSNs have
some form of heterogeneity. Given these two observations, we
propose a nonuniform compressive sensing method to improve
the performance of WSNs by exploiting both compressibility and
heterogeneity. We apply our proposed method to real WSN data
sets. We find that our method can provide a more accurate
temporal-spatial profile for a given energy budget compared with
other sampling methods.

Index Terms— Compressive sensing (CS), heterogeneity,
nonuniformal sampling, sample schedule, wireless sensor
networks.

I. INTRODUCTION

N THIS paper, we consider the problem of using wireless

sensor networks (WSNs) to measure the temporal-spatial
profile of some physical phenomena in an energy efficient
manner. Much work [7], [9], [21] has been done in improving
the efficiency of WSNs in the past decade. The key distinction
of this paper is that we exploit compressibility and hetero-
geneity to derive a nonuniform compressive sensing method
to improve the performance of WSNs. More specifically, the
nonuniform compressive sensing method that we propose can
give a more accurate temporal-spatial profile for a given energy
budget compared with other methods.

Our work is based on two hypotheses. Firstly, we assume
that most physical phenomena are compressible in some
transform domain basis. This is also the assumption behind the
recently proposed theory of compressive sensing (CS), which
is an efficient signal reconstruction method that can recover a
signal from a small number of samples [3], [4]. This is also
the assumption behind a number of recent work [1], [5], [14],
[18] on using compressive sensing to improve the operations
of WSNs. Secondly, we assume that each WSN has some
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form of heterogeneity. As an example, for a rechargeable WSN
using solar energy, some nodes have a lower energy harvest
rate because of the presence of shadowing; these nodes have
a lower energy harvest rate compared to those nodes whose
solar panels are not obstructed [12], [23]. In addition, it is
possible for nodes in a rechargeable WSN to have different
initial amount of energy [10].

Given these two hypotheses, we propose a nonuniform com-
pressive sensing (NCS) method to improve the performance of
WSNs by exploiting both compressibility and heterogeneity.
We demonstrate how NCS can be exploited using WSN
which is powered by solar energy and the dominant form of
energy consumption is sensing. Furthermore, we investigate
two fundamental questions on the performance of NCS.

1) What is the probability of accurate signal recovery with
the NCS framework?

2) What is the benefit of introducing NCS into WSNs? In
particular, we want to know the amount of improve-
ment NCS can make in improving the accuracy of the
temporal-spatial profile for a given energy budget.

To answer the first question, we formally derive the proba-
bility that NCS can recover a sparse signal exactly. Although
our theoretical results show that NCS has a lower recovery
probability compare with uniform sampling based compres-
sive sensing, we will show using real WSN data that the
reconstruction accuracy of NCS and uniform sampling based
compressive sensing are similar.

In order to answer the second question, we evaluate the
proposed NCS extensively with a real WSN application
dataset, which features resource heterogeneity. We present a
distributed implementation of NCS framework that introduces
very little communication overheads, and show that, compared
to previously proposed approaches based on traditional CS and
sparse approximation respectively, NCS achieves similar sig-
nal approximation accuracy but with significantly less energy
consumption.

The rest of this paper is organized as follows. Section II
discusses assumptions (signal compressibility and resource
heterogeneity). In Section III, we discuss the basic setup of
the problem and the background knowledge of CS, which
is followed by the introduction of the notion of NCS and
the derivation of the probability of signal accurate recovery
by NCS in Section IV. We evaluate and study proposed
NCS framework by the dataset from a WSN deployment,
which features resource supply heterogeneity in Section V.
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We discuss prior work in Section VI. Finally, Section VII
concludes this paper.

II. ASSUMPTIONS

WSNs are deployed to obtain an accurate temporal-spatial
profile of some physical phenomena, e.g., temperature, humid-
ity, wind speed, and/or wind direction [15], [23]. In this paper,
we make the following two assumptions on the behavior of
WSNs for nonuniform Compressive Sensing (NCS) architec-
ture.

Assumption 1: The signals (or physical phenomena) moni-
tored by WSNs are compressible in some transform domains.
Common examples of transform domains include Discrete
Cosine Transform (DCT), wavelets or Haar wavelet.

Assumption 1 implies that the sampling frequency and
spatial distribution of sensors are high enough to capture any
temporal and spatial correlation in the usually slowly-varying
underlying environmental state of interest [20], and we will
formally defined compressible signal in Section III.

Assumption 2: There is heterogeneity, e.g., the energy sup-
ply (harvest) rate and/or energy consumption rate, in the
WSNs, and we can exploit the heterogeneity to increase the
performance (e.g., increase network duty cycles and lifetime)
of WSNs.

We will introduce a real application in Section V, where
NCS exploits heterogeneity in solar energy harvest rate to
improve the performance of WSNs. We believe that these two
assumptions are not restrictive at all and can be satisfied by
most WSNE.

An important argument that we will make in the follow-
ing section is that, due to the heterogeneity of the WSNs,
the probability distribution for making sampling decision
should be nonuniform. Furthermore, we will demonstrate that
nonuniform sampling has a better performance compared with
uniform sampling.

III. BASIC SETUP AND BACKGROUND ON
COMPRESSIVE SENSING

We point out in the previous section that heterogeneity
in resource supply or resource consumption is a common
phenomenon in WSNs. Given this heterogeneity in resource
supply or consumption in WSNs, we propose that nonuniform
sampling can be a tool that we can exploit to improve the
performance in such WSNs. In particular, we want to show
that, by using nonuniform sampling, we can, for a given energy
budget, improve the accuracy of the temporal-spatial profile
obtained from WSNs.

In order to realise this goal, we need to develop a model
to understand how nonuniform sampling affects the accuracy
of the temporal-spatial profile obtained. If we have such a
model and if we also know the energy consumption of a
particular nonuniform sampling pattern, then we will be able to
determine good sampling patterns that give accurate temporal-
spatial profile for a given energy consumption. Therefore, in
Section IV, we will develop a model to show how nonuniform
sampling affects the accuracy of the temporal-spatial profile.
The model that we will develop uses compressive sensing
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as the building block. The aim of this section is two-fold.
Firstly, we present a basic setup of the problem and review
some results in compressive sensing which is necessary for
the development in Section IV.

We begin with setting up the problem. Consider a wireless
sensor network with N nodes where each node measures a
number of physical phenomena, e.g. temperature, humidity,
wind speed, wind direction. We will consider one physical
phenomenon at a time. Let x;; denote the value of a particular
physical phenomenon at sensor i (wherei = 1, ..., N) and time
t (where t = 1, ..., T). The complete temporal-spatial profile
of a physical phenomenon consists of # = NT values of x;;
withi =1,..., Nandt =1, ..., T. It is obviously good to have
the complete temporal-spatial profile since this provides the
maximum amount of information. However, this means that
all sensor nodes will need to sample at all time and this can
result in high sampling or transmission energy consumption.
In order to lower the energy consumption, we do not require
all the sensors to sample the physical phenomenon at all time.
If the value of a physical phenomenon x;; is not measured
(or sampled) by sensor j at time 7, we will predict the value
of xj; from those sensor readings that are available.

In the following discussion, we will collect all the values of
Xj; into a n x 1 vector x where each element of x corresponds
to the value of the physical phenomenon at a particular sensor
at a particular time. We will assume some of the elements of
the vector x are known (i.e., an element of x is known if the
corresponding sensor samples at the corresponding time) and
the goal is to predict the unknown elements of x from those
that are known. A key idea behind the prediction method is to
exploit the fact that most physical phenomena are compressible
in some transform basis, e.g. Fourier, DCT, wavelets etc.
A signal x € R" is said to be compressible in a transform basis
P, if the coefficients of the x in the basis @ decays according
to the power law. In order to define this more precisely, we
specify a transform basis ¥ by a n x n matrix ¥ whose
columns are the basis vectors. In this case, the coefficients of
x in the basis ¥ is given by the vector g where x = ¥g. Let us
rearrange the elements in g in decreasing order of magnitude,
lglay = 1gl@) = ... = |glm), then x is compressible if the
following condition holds:

Iglgy <Ck™P Vk=1,..,n (1)

for some p > 1 [4] and some constant C. We will use
data collected from real wireless sensor networks to show
that physical phenomena such as temperature, humidity, wind
speed and wind direction are compressible.

We now explain how compressive sensing method, such as
the one described in [3], can be used to estimate the unknown
elements in x from those that are known. Let us assume that m
elements of x are known and the indices of these m elements
in x are ki, ko, ..., k. Let Q be the set of the indices of the
samples, i.e., Q = {ky, ko, ..., kp}. Let also I € R"*" denote
the identity matrix. We define I be a m-by-n matrix such that
the k-th row of I is also a row in I if k¥ € Q. With this defin-
ition, the vector Iox € R™ contains the known elements of x.

The compressive sensing method in [3] says that one can
estimate the unknown elements in x given Igx (i.e., the
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known elements in x) and the fact that x is compressible
in the transform domain ¥ by solving the following linear
programming problem:

X = ¥y where y = arg m]iRn lylli st Ig¥Py =Igx. (2)
yeR"

For the case where the vector x is sparse (note: a vector
x is sparse if its transform in some domain contains a small
number, say S < n, of nonzero coefficients), [3] gives some
theoretical results on how the probability of recovering the
vector x successfully depend on m, see [3] for further details.
Although the above result is stated for sparse vectors, it has
been successfully applied to real-life data (which is generally
not sparse, but compressible) such as magnetic resonance
imaging [3]. In practice, the above result can be applied to
compressible signal if we interpret the number of nonzero
coefficients S in the sparse signal as the number of dominant
coefficients in the compressible signal.

The compressive sensing method described above assumes
that exactly m out of n (where m << n) elements of
the vector x are sampled. The key difficulty of using this
method in wireless sensor networks is that a good amount of
co-ordination is needed by the nodes to ensure that exactly
m elements of x are sampled. In the next section, we will
introduce two sampling methods such that we do not require
exactly m elements of x are sampled, rather, we require the
mean number of samples is m. Such probabilistic methods
require a less co-ordination among the nodes and are more
suited for distributed implementation. Furthermore, such type
of probabilistic sampling methods have not been studied and
are a key contribution of this paper.

IV. NCS WITH SPARSE MATRIX

This section considers the following data recovery problem:
given that a number of elements of the vector x € R”
are known, the goal is to recover the unknown elements
of x using the knowledge that the vector x is sparse in a
known transform basis. Our aim is to derive the probability
of recovering x successfully under two different models of
sampling the elements of x, namely uniform Bernoulli model
and nonuniform Bernoulli model. Note that the analytical
result is proved for sparse signal, but in practice the result
is applicable to compressible signal as mentioned earlier. We
first define the problem more precisely.

A. Problem Definition

Given an unknown vector x with n elements, we first
sample a number of elements of x and then use these sampled
elements together with the fact that x is sparse in a known basis
to cover the unmeasured elements of x. In this paper, we will
consider two different probability distributions for sampling
the elements of x.

Let us first formally define the two different sampling
distributions. Let d; € {0, 1} be a random variable that denotes
whether the k-th element of x is sampled, i.e., oy = 1 if the
k-th element of x € R” is sampled (and is therefore known),
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otherwise d; = 0. In the following, m € [0, n] and my, € [0, n]
(1 < k < n) are parameters of the sampling distributions. We
consider the following two probability distributions for d.

1) Uniform Bernoulli Model: P[oy = 1] = m/n where
P[E] denotes that the probability that event E occurs.
The probability distributions of d1,..., J, are assumed to
be independent.

2) Nonuniform Bernoulli Model: P[6y = 1] = my/n such
that >/, m; = nm. The probability distributions of
01,..., Op are assumed to be independent.

Note that in the above models, m, my,..., m, are parameters
chosen by the users. It is readily seen from the above defi-
nitions that the uniform Bernoulli model is a special case of
the nonuniform Bernoulli model, however, we will generally
assumed that the m;’s in the nonuniform Bernoulli model take
on different values. Lastly, note that the number of sampled
elements in x using the above sampling models can vary from
0 to n, however, the average number of sampled elements is
always m for both models.

We assume that the vector x is compressible in the trans-
form basis ¥ where the columns of ¥ form the basis vectors
of the transform basis. Let  be the set of the indices of the
samples, i.e., Q = {k € [1,n]: o = 1}. Let also I € R"*"
denote the identity matrix. We define I be a |Q|-by-n matrix
such that the k-th row of I is also a row in Ig if £k € Q
(i.e., oy = 1). With this definition, the vector Igx € RI€
contains the sampled elements of x.

We will attempt to recover the unknown elements in x
(i.e., those elements that are not sampled) by using basis
pursuit, i.e., by solving the linear programming problem shown
in Eq. (2).

In the following we will give results on how the probability
of successfully recovering x by using basis pursuit when € is
generated by the uniform and nonuniform Bernoulli models.

B. Results

Before stating the results, we will need to define a few
additional notation. Let 8 be the coefficients of the vector x in
the basis P, i.e., x = V6. Since x is assumed to be sparse in
Y, the vector @ is sparse. Let S denote the number of nonzero
coefficients in 8. In addition, we denote the coherence between
the identity matrix and the basis ¥, by u(¥). Following
[3], u(¥) is given by /n max;; y;; where y;; is the
(i, j)-element of V.

Corollary 1: If the uniform Bernoulli model is used to
generate the indices of the samples € and the basis pursuit
method (2) is used to recover the vector x, then with a proba-
bility exceeding 1 — d, it is possible to recover x successfully
provided that

o (15 () ) e ()
m > Ky~ max | |S], log 5 log 5 3)

for some small constant K. g

Note that the proof of Corollary 1 can be extracted from the
proof in [3]. Although the result in [3] is stated for choosing m
rows uniformly from I to form the measurement matrix Ig (in
other words, exactly m samples of x are sampled), the proof
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relies on using the uniform Bernoulli model as an intermediate
step.

For the case of nonuniform Bernoulli model, the probability
of recovery is lowered than that of the uniform Bernoulli
model. The degradation in recovery probability is stated in
the following proposition.

Proposition 1: If the uniform Bernoulli model is used to
generate the indices of the samples Q and the basis pursuit
method (2) is used to recover the vector x, then with a
probability exceeding 1 — xJ (where k¥ > 1), it is possible
to recover x successfully provided that

m > K u” max (|S|, log (%")) log (%”) 4)

for some small constant K. The value of x depends on m,
msy,..., m, and m, and is given by

k= II}_ ki 5)
where
M ifmg >m
BT iy < m ©)
O

C. Proof of Proposition 1

For a given n, there are 2" different sampling patterns
depending on whether each element is sampled or not. We will
denote these 2" sampling patterns by Ay with 0 <k <2" —1
where the k-th sampling pattern Ay is (Jik, ..., Opk) With
k=" ou2i-l

Let Q; and Q; denote, respectively, the uniform and
nonuniform Bernoulli sampling distributions described in
Section IV-A. Let Failure[€21] and Failure[€2;] denote, respec-
tively, the event that the uniform Bernoulli and nonuniform
Bernoulli sampling method will fail to recover the unknown
vector X. We can express the probability of these two events
as

2"—1

P[Failure(Q;)] = Z P[Failure(Ay)]Pg, [Ak] 7
k=0
21

P[Failure(Q;)] = Z P[Failure(Ay)1Pq, [ A] ®)
k=0

where P[Failure(Ag)] is the probability that sampling pat-
tern Ay does not lead to successfully recovery. In addition,
P, [Ax] and Pq,[Ax] are, respectively, that the sampling
pattern Ay is drawn under the uniform Bernoulli model Q;
and the nonunifrom Bernoulli model 5.
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By using equations (7) and (8), it can be shown that

2" —1
> P[Failure(A)]Po,[As]
k=0
2"—1
Z P[Failure(A)|Pq, [Ax]
k=0
2"n—1
Z P([Failure(A)1Pq, [Ar]
k=0

P[Failure(Q,)]

Po,[Af]
Po, [Af]

IA

Pq,[A]

max ——

Ar Pa [Ak]
Pa,[Ar]

= P[Failure(Q1)] nﬁx m )

Therefore, the probability of failure using the nonBernoulli
model is Pq,[A]/Pq,[Ak] (which will be denoted by «)
times worse than that of the uniform Bernoulli model. It can
be shown that x is equivalently given by

i I (G5 + (1 =01 — =5))
aeel0, 1 k=1,...n TI_ (05 + (1 = ) (1 — 7))
G (1 — ) (1 — ™

I n_ 10
=1 S (o - 1) (10

It can be shown that the expression on the right-hand-side
is maximised if d is chosen to be 1 if m; > m, otherwise
should be chosen to be 0. This shows that x is given by the
expression in Proposition 1.

Although Proposition 1 shows that the probability of exact
reconstruction for nonuniform compressive sensing is lower
than that of uniform sampling, we will show using real WSN
data in the next section that the performance degradation is
negligible.

V. NCS APPLICATION: ENERGY NEUTRAL OPERATION
FOR RECHARGEABLE WSNS

In this section, we evaluate the performance of the proposed
NCS framework in a rechargeable WSN whose nodes have
different solar harvest rates. The dominant form of energy
consumption in this WSN is sensing. We will demonstrate
how NCS can be used to produce accurate temporal-spatial
profile for a given energy budget while maintaining energy
neutral operation.

A. Application Description and Experiment Setup

We consider the application of WSN in rainforest monitor-
ing at the Springbrook National Park, which is is part of a
World Heritage precinct in Australia. A WSN of 200 nodes
is to be deployed at Springbrook by 2011 with the aim to
collect microclimate data for improving the understanding of
the rainforest restoration processes. The WSN deployment will
be completed in three phases, where the phase one deployment
has already been completed. Fig. 1 shows the eight nodes
deployed in phase one.

Wind speed and wind direction are two important indicators
to monitor the rain forest restoration process, therefore each
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Fig. 1.

Sensor locations of the Springbrook WSN.

of the nodes in the phase one deployment contains these two
types of wind sensors. These wind sensors consume substantial
amount of energy. In particular, their energy consumption is
higher than the radio [19]. Therefore, sensing (or sampling)
is the dominant form of energy consumption for each sensor
node.

TABLE I
AVERAGE SOLAR ENERGY HARVEST RATES OF THE NODES

Node ID | Harvest Rates (mA/min)
1 13

0| A N | K| W[
—_

Energy supply is a major design constraint in the Spring-
brook deployment. In order to cope with the high-energy
demand of the wind sensors, each node is equipped with a
solar panel to recharge the battery. A key feature of this WSN
is that there is a variation in the solar harvesting rate at each
node. For nodes out in the open, i.e., not overshadowed by
trees, such as node 1-4 and 6-8 in Fig. 1, the solar energy
harvesting rate is high. However, for node 5 in Fig. 1, which is
situated deep inside the forest, its solar energy harvesting rate
is only 5% of the daily solar energy harvest rate of those nodes
out in the open. Table I shows the average solar current harvest
rates of these eight nodes. Table I also shows that this WSN
monitoring application meets Assumption 2 of NCS because
of energy supply heterogeneity in the sensor nodes. Intuitively,
the node that has a higher energy supply can sample more.

The sampling interval for the wind sensors at the Spring-
brook site is 5 minutes. We used one month of data which has
8,448 snapshots of both wind speed and wind direction sensor
data. Note that a snapshot is the collection of sensor readings
at a given time instance. Therefore, a snapshot of wind speed
consists of the 8 wind speed readings from the 8 sensors. As
in [19], we used a signal of length 1,024, which is made up
by “vectorizing” a set of 128 snapshots—this corresponds to
choosing N = 8, T = 128 and n = 1,024 in Section III.
The 8,448 (= 66 x 128) snapshots are divided into 66 data
segments and we apply NCS to each data segment in turn. The
presented results are the average over these 66 data segments.
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Fig. 2. (a) Compressibility of the DCT coefficients of the wind speed and
(b) wind direction signals.

We begin by checking that Assumption 1 (Section II) on
the compressibility of the signal holds. We therefore studied
the compressibility of the wind sensor data in a number of
sparsifying bases including DCT, wavelets (Haar, Symlets) and
Fourier. For both wind speed and wind direction, by computing
the representation of all the data segments in these sparsifying
basis, we observed that out of all the bases, the coefficients
in the DCT have the quickest decay. In order to demonstrate
the compressibility of the signal, we need to show that the
coefficients decay like power law as Eq. (1). In Fig. 2, we
plot both the DCT coefficients and power law decay, and it
can be seen that the DCT coefficients lie below the power law
curve. Therefore, the wind speed and direction signal satisfies
Assumption 1, and both assumptions of NCS have been met.
Apart from the heterogeneity and sparsity assumptions, to
gaurantee an accurate recovery using uniform or nonuniform
Bernoulli sampling, the coherence (Section IV-B) of the basis
¥ should be small. From [3], we know that coherence must
be in the range of [1,./n] and it can be shown that the
coherence of the DCT matrix is +/2, which is close the the
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lower limit of possible coherence values. Given our sensing
data is compressible in the DCT domain, Bernoulli sampling
should work well with our data.

B. Distributed Implementation

A centralized approach of energy-aware workload (or sam-
pling rate) allocation typically increases the amount of com-
munications between the nodes and the base station which
consumes transmission energy. In this section we present a
distributed implementation of NCS, where nodes locally make
sampling decision without frequent communication with the
base station and thus save the additional energy required by
the centralized approach for base to node communication.

Given each data segment consists of data collected from
N sensors over T sampling instances, and assume that an
application needs to collect on average m samples (out of a
total of n = NT samples for each data segment) in order to
meet the reconstruction accuracy requirement. In NCS, node
J samples at a rate of m ;/n. This sampling can be conducted
locally using the steps as follows:

Step 1: Node j (j =1, ..., N) generates a random variable
o; using the following distribution function at each sampling
time instance:

+1 with prob. 7g;,

9j = - .
0  with prob. 1 — 7 gj,

(1D
where g; is the ratio of the energy of a node to the total energy
of the nodes, ie., g; = E]-/Z;-Vzl E; and E; is the energy
harvest rate at node j.

Step 2: If 6; = 1, node n; samples at that time instance
and transmits its measurements to the base station.

The above steps mean that: (1) Node j samples at a rate
of mj/n = m/Tg;. (2) The term g; is proportional to the
energy harvest rate of node j, thus heterogeneity in energy
harvest rate will automatically produce nonuniform sampling
in the network.

After every T sampling instances, the base station can use
the measured samples collected from the sensors to reconstruct
the unknown (i.e., not sampled) data in each data segment
using the method described in Section IV. Note that the
expected number of samples to be collected for each data
segments (with n = NT data points) is m.

Note, in our distributed implementation, the sensor nodes
need to know the values of m and T. They also need to share
the values of their energy harvest rates (E;) among them.
The communication overhead of NCS is very little because
these values do not need to be updated frequently (e.g., once
per day). For example, the value of m is set whenever the
application reconstruction requirement is known.

C. Evaluation Results

We now evaluate the performance of NCS framework
using the wind speed and wind direction data collected from
the Springbrook WSN. We will compare the performance
of 4 schemes. The first one is the nonuniform sampling
scheme based on nonuniform Bernoulli sampling proposed in
Section IV with the sampling rate of each node determined by
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Fig. 3.  Reconstruction accuracy comparison of different schemes with
(a) wind speed and (b) wind direction signals.

the method in Section V-B. The second scheme a previously
proposed nonuniform sampling method EAST [19], which
also leverages the energy supply heterogeneity of rechargeable
WSNs to support nonuniform sample schedules. However,
instead of compressive sensing, EAST is based on a simplified
AMS sketching coding/decoding for signal reconstruction. For
the reason of completeness, the third scheme to be compared is
UEST, which is based on a uniform sample schedule and AMS
sketching coding/decoding schemes [22]. The fourth scheme
is the uniform Bernoulli scheme in Section IV where each
node samples with a probability of m/n.

We first compare the reconstruction accuracy of a data
segment (i.e., x € R" with n = NT) against the fraction of
data points (= m/n) used (It is important to point out that the
comparison here does not take into consideration whether the
network has sufficient energy to collect the samples given by
data fraction m/n. The aim here is to study the reconstruction
performance if a given fraction of data is available. The actual
amount of data that a network can collect depends on the
sampling scheme and will be discussed later in the section).
We measure the reconstruction accuracy by using the relative
error in reconstructing the vector x. Fig. 3 shows the recon-
struction accuracy of different sampling schemes (uniform
Bernoulli, nonuniform Bernoulli, UEST and EAST) against
different fraction of data points for both wind speed and wind
direction data. The figure shows that uniform Bernoulli and
nonuniform Bernoulli (both of which are based on compressive
sensing) perform significantly better than UEST and EAST
(both of which are based on AMS decoder). CS-based methods
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Fig. 4. Reconstruction error of (a) wind speed and (b) wind direction signals.

outperform nonCS methods because AMS-decoder needs more
data than compressive sensing to achieve the same level of
reconstruction accuracy as shown in [22]. Fig. 3 also shows
that nonuniform Bernoulli performs very close to uniform
Bernoulli, and the difference in relative approximation error
is less than 0.2 when a fraction of data points equal to 0.5.
This shows that the nonuniform Bernoulli can achieve almost
the same accuracy as uniform Bernoulli if the same amount
of data is available.

Furthermore, we are interested in the impact of nonuniform
sampling on the signal reconstruction accuracy at each node.
Fig. 4 shows the mean and standard deviation (among different
time snapshots) relative approximation error of all nodes
on both wind speed and direction signals using nonuniform
Bernoulli sampling with the fraction of data points fixed at
0.3. Fig. 4 shows that node 5 does not have the maximum
relative approximation error, though the node has the minimum
energy level. Therefore, nonuniform sampling schedule has
no significant impact on the signal reconstruction accuracy of
different nodes.

The above evaluation shows that uniform and nonuniform
Bernoulli sampling have comparable reconstruction accuracy

IEEE SENSORS JOURNAL, VOL. 13, NO. 6, JUNE 2013

but the evaluation does not consider whether the WSN has
sufficient energy to sustain the sampling operation. We now
impose the additional requirement that the WSN should have
energy neutral operation, i.e., the power consumption of each
node must be less than the harvest rate of that node. We
base our calculations on the solar harvest rate in Table I.
We find that uniform Bernoulli sampling can only sustain a
sampling rate, expressed as the fraction of data points m/n,
of merely 0.1 but nonuniform sampling can achieve 0.5. An
explanation of the difference is as follows. First note that
node 5 in the network has a low energy harvest rate (see
Table 1), so node 5 can only use a low sampling rate. Recall
that uniform sampling requires that each WSN node uses the
same sampling rate and given that node 5 can only use a low
sampling rate, this forces all nodes in the network to use a
low sampling rate of 0.1 to achieve uniform sampling and
energy neutral operation. However, for nonuniform sampling,
the network only has to maintain an overall average sam-
pling rate but each node can have a different sampling rate.
As a result, nonuniform sampling achieves an overall sampling
rate of 0.5, with node 5 sampling at a lower rate while other
nodes sampling at a higher rate. This heterogeneous sampling
pattern allows an overall higher sampling rate compared with
uniform sampling while maintaining energy neutral operation
at each node. If we now return to the reconstruction results
in Fig. 3 and let us focus on wind speed data. Given that
uniform sampling can only achieve a sampling rate of 0.1, its
reconstruction error is 0.37. However, nonuniform sampling
can realize a rate of 0.5, its reconstruction error is only 0.125.
The same discussion also applies to wind direction. There-
fore, by exploiting heterogeneity, nonuniform sampling can
achieve a better reconstruction accuracy (lower approximation
error).

Another evaluation which has been published in [25] is
based on the datasets from Intel Berkeley lab which is public
on the web. We exploit heterogeneity of the ETXs (the
expected number of transmission). The results also support our
claim: non-uniform compressive sensing will achieve better
reconstruction accuracy with the same energy budget.

VI. RELATED WORK

There are a number of prior works on investigating how
compressive sensing can be used to improve the efficiency
of wireless sensor networks, e.g., [1], [5], [14], [18]. The
key difference between [1], [S], [14] is how the network
acquires compressive sensing projections, which are linear
combinations of the sensor readings. This paper [1] suggested
to compute these projections by using an additive medium
access control channel. While both papers [5], [14] acquire
projections by using message passing, this paper [14] acquires
projections by constructing an aggregation tree but this paper
[5] uses adaptively compressive sensing to choose the pro-
jection coefficients. A common theme of [1], [5], [14] is to
efficiently acquire projections in WSNs. This paper [18] has
a different emphasis from the other three in that if focused
on finding a good basis, i.e., it studies the choice of basis
matrix ¥ (see Section III). Our work in this paper differs
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from these four papers in two aspects. Firstly, all these four
papers assume that sensors sample the physical phenomenon at
each sampling instance but we consider nonuniform sampling
in this paper, which means that some sensors do not sample
at certain sampling instances. Secondly, these four papers
assume that energy consumption in the WSNs is dominated
by wireless transmissions, however, we consider different case
where energy consumption can be dominated by sensing.

The CS based methods discussed earlier use a dense projec-
tion matrix, which requires all the data points a signal vector to
be collected. However, since only a few projections need to be
transmitted, the proposed methods could save the transmission
energy. Our CS implementation is different from the earlier
methods since we use a sparse projection matrix and thus do
not require to collect all the data points of the signal vector.
A CS based data gathering approach is presented in [17] which
investigates the impact of a routing topology generated sparse
projection matrix on the accuracy of the approximation. Our
work is different from theirs since our projection matrix is not
based on the routing topology rather it is populated based on
the energy profile of the sensors.

Different techniques apart from CS have been used in
the past to enable adaptive sesning exploiting the temporal,
spatial or spatial-temporal [2], [6], [8], [13], [24] correlation of
the signal. Though both our sensing/transmission approaches
exploit the temporal-spatial correlation of the data points, we
have considered nonuniform energy profile of the sensors,
which is different from the existing literature.

Work presented in [12] and [16] propose harvest-aware
sampling approaches, where sensors are assigned sampling
workload based on their harvested energy level. However, the
focus of these papers are not on signal approximation from
the network.

Work presented in [19] uses nonuniform sampling to
improve the efficiency of solar powered WSNs whose energy
consumption is dominated by sensing. However, unlike CS, the
algorithm proposed in [19] named EAST, is based on a sparse
approximation method called “sparse random projections”
proposed in [22]. In Section IV compare the performance of
EAST against the algorithm proposed in this paper and we find
that our proposed algorithm in this paper outperforms EAST.

Communication overhead heterogeneity has also been
exploited to extend sensor network lifetime in [11] and [10].
However, [11] is designed to satisfy an application’s accept-
able tolerance of aggregation queries (such as min, max,
sum, mean) with imprecise and inaccurate samples. On the
other hand, NCS is designed to recover the whole signals
with some approximation errors. The authors assume there
are heterogenous sensor nodes, with heterogeneous radios and
initial energy supplies, in the networks [10]. NCS can work
with sensor networks that have homogenous radios and initial
energy supplies.

VII. CONCLUSION

In this paper, we consider a large scale wireless sensor
network (WSN) measuring spatio-temporal correlated physical
phenomena, i.e.,, compressible signals. At the same time, we
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also consider that there is there is heterogeneity in resource
supply in the WSNs, which is a common phenomenon. We
proposed a a framework to address the problem of heteroge-
neous sensor sample schedule (nonuniform sampling) signal
reconstruction by extending Compressive Sensing (CS) theory,
to exploit the heterogeneity in a WSN that monitor com-
pressible signals, in order to improve network performance.
We prove that, similar to its uniform sampling counterparts,
nonuniform CS can also recover compressible signal accu-
rately with a high probability. We evaluated proposed NCS
with a real WSN application, which has resource supply
heterogeneity. We presented a distributed implementation of
NCS framework that introduced very little communication
overheads, and show that, compared to previously proposed
approaches based on traditional CS and sparse approximation
respectively, NCS achieved similar signal approximation accu-
racy with significantly less samples (energy consumption).
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